Exercice 1 (7.1.6, modifié)

Soit la réaction hétérogène à l'équilibre

$$CaCO_3(s)$$
 \leftarrow $CaO(s) + CO_2(g)$

A 800°C, la pression de CO_2 dans un réacteur fermé est de 0,22 bar. Calculer la constante d'équilibre K à cette température. (La pression de référence $P^0 = 1$ bar)

Exercice 2 (7.2.5-modifié)

On enferme 0,2 g de CO₂ dans un récipient d'un litre, initialement vide, maintenu à 2500 K. Le CO₂ se dissocie selon la réaction

$$2CO_2(g)$$
 \rightleftharpoons $2CO(g) + $O_2(g)$$

Calculer la constante d'équilibre K à cette température, sachant que la pression totale dans le récipient, mesurée à l'équilibre est 1bar. La pression de référence $P^0=1$ bar.

Exercice 3 (7.2.7 modifié)

Dans un récipient fermé de 5 L, on mélange 12 g de SO₃, 5 g de O₂ et 8 g de SO₂ à 700°C

$$2 SO_2(g) + O_2(g) \implies 2 SO_3(g)$$

Si la constante d'équilibre K de la réaction vaut 3.46 à la température d'expérience. ($P^0 = 1$ bar)

- a) Le système est-il à l'équilibre ? Sinon, dans quel sens la réaction évolue-t-elle ?
- b) Une fois l'équilibre atteint, dans quel sens la réaction aura-t-elle tendance à évoluer si
 - on chauffait le système en sachant que la réaction est exothermique
 - on augmentait la pression du système (par diminution du volume)
 - on augmentait la quantité de SO₂

Exercice 4 (7.2.8, modifié)

La constante d'équilibre de la réaction

$$CO(g) + H_2O(g) CO_2(g) + H_2(g)$$

à 986 °C est de 0,63. Un mélange de 1 mole de vapeur d'eau et de 3 moles de CO atteint son équilibre sous une pression totale de 2 bar. (La pression de référence $P^0 = 1$ bar)

- a) Combien y-a-t-il de moles de H₂ à l'équilibre?
- b) Quelle est la pression partielle de chacun des gaz dans le mélange à l'équilibre?

Exercice 5 (8.1.10)

Soit la réaction de décomposition dans un milieu réactionnel fermé:

- a) Calculer $\Delta_r H^0$, $\Delta_r S^0$ et $\Delta_r G^0$ de cette réaction à 25°C.
- b) Si la réaction n'est pas spontanée dans ces conditions, estimer la température à laquelle elle le devient.
- c) Quelle est l'expression de K?
- d) Quel effet aura l'ajout de NaHCO3 solide si le réacteur est fermé ou s'il est ouvert ?

Données (à 25°C)

	$\Delta_{\mathrm{f}}\mathrm{H}^{\mathrm{O}}\left[\mathrm{kJ\ mol^{-1}}\right]$	S ^o [J K ⁻¹ mol ⁻¹]
NaHCO ₃ (s)	- 950,8	101,7
Na ₂ CO ₃ (s)	- 1130,7	138,8
CO ₂ (g)	- 393,5	213,7
H ₂ O (g)	- 241,8	188,8

Exercice 6 (8.2.9, modifié)

La réaction de vaporisation du brome est la suivante :

$$Br_2(\ell) \implies Br_2(g)$$

- a) Est-elle spontanée aux conditions standard à 25°C?
- b) Calculer la pression de vapeur du brome à 25°C (P° = 1 bar).
- c) Comment varie qualitativement l'entropie du système pendant la vaporisation ?

Donnée : $\Delta_f G^O \left(Br_2(g) \right) = 3,1 \text{ kJ mol}^{-1}$

Exercice 7

On enferme un échantillon de phosgène $COCl_2$ (g) dans un récipient (volume constant) à 395 K et on mesure une pression initiale (avant équilibre) de 0.35 bar. Calculer les pressions partielles de chaque gaz (Cl_2 , CO, $COCl_2$) ainsi que la pression totale du système à l'équilibre (T = 395 K)

Données:

 $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$ K = 0.22, pression de référence $P^0 = 1$ bar Considérer que les valeurs numériques des activités sont égales à celles des pressions partielles.

Exercice 8 (à faire sans consulter les tables thermodynamiques)

La réaction de formation de l'ozone O_3 (g) à partir de l'oxygène O_2 (g) est-elle spontanée aux conditions standard à 25°C. Donnée: $\Delta_r H^0 = 285$ kJ/mol (95 kJ/mol O_2).

$$3 O_2(g) \rightarrow 2 O_3(g)$$

Exercice 9

Soit la réaction suivante aux conditions standard

$$NH_4NO_3(s) \implies N_2(g) + 1.5 O_2(g) + 2H_2(g)$$

Donnée : $\Delta_f H^0 (NH_4NO_3(s)) = -365 \text{ kJ/mol}$

Indiquer la ou les affirmation(s) correcte(s) dans la liste suivante (en considérant la réaction dans le sens direct)

a)
$$\Delta_r H^0 > 0$$
b) $\Delta_r S^0 > 0$
c) la réaction est spontanée à toutes les températures
d) la réaction est spontanée aux températures supérieures à $\Delta_r H^0 / \Delta_r S^0$

Exercice 10

Soit la réaction suivante

$$H_2O(g) + \frac{1}{2} O_2(g)$$
 \longrightarrow $H_2O_2(g)$

Donnée : la constante d'équilibre augmente avec la température.

Indiquer quelle(s) est (sont) le(s) affirmation(s) correcte(s) pour la réaction directe (de gauche à droite) aux conditions standard:

a) l'entropie de réaction diminue	
b) la réaction est endothermique	
c) la réaction est spontanée à haute température	
d) la réaction est spontanée à basse température	